已知函数\(f(x) = x|x – a| – 2a^2\),若当\(x > 2\)时,\(f(x) > 0\),则\(a\)的取值范围是( )
A. \((-\infty, 1]\)
B. \([-2, 1]\)
C. \([-1, 2]\)
D. \([-1, +\infty)\)
B
A. \((-\infty, 1]\)
B. \([-2, 1]\)
C. \([-1, 2]\)
D. \([-1, +\infty)\)
\(f(x) = x|x – a| – 2a^2 = \begin{cases} x^2 – ax – 2a^2, x \geq a \\ -x^2 + ax – 2a^2, 2 < x < a \end{cases}\),
当\(2 < x < a\)时,\(f(x) = -x^2 + ax – 2a^2\),
此时\(\Delta = a^2 – 4 \times 2a^2 = -7a^2 < 0\),
所以\(f(x) < 0\),不满足当\(x > 2\)时,\(f(x) > 0\),故\(a > 2\)不符合题意;
当\(0 < a \leq 2\),\(x > 2\)时,
\(f(x) = x|x – a| – 2a^2 = x^2 – ax – 2a^2 = (x – 2a)(x + a) > 0\),
解得\(x > 2a\),
由于\(x > 2\)时,\(f(x) > 0\),故\(2a \leq 2\),解得\(0 < a \leq 1\);
当\(a = 0\),\(x > 2\)时,
\(f(x) = x^2 > 0\)恒成立,符合题意;
当\(a < 0\),\(x > 2\)时,
\(f(x) = x|x – a| – 2a^2 = x^2 – ax – 2a^2 = (x – 2a)(x + a) > 0\),
解得\(x > -a\),
由于\(x > 2\)时,\(f(x) > 0\),故\(-a \leq 2\),解得\(-2 \leq a < 0\).
综上\(-2 \leq a \leq 1\).
故选:B.



暂无评论内容