若$e^a + a = \lg b + b^2 = \ln c + c^3 = 0$,则$a, b, c$的大小关系为_______.
$a < b < c$
$\because e^a > 0$,$\ \therefore -a > 0$,$\ \therefore a < 0,$
$ \because \lg b + b^2 = 0$,$\ \therefore \lg b = -b^2,$
设$y=\lg x$,定义域为$(0,+\infty)$,$y=\lg x$在$(0,+\infty)$上为单调递增函数,
设$y=-x^2$在$(0,+\infty)$上为单调递减函数.
当$b=1$时,$\lg b=\lg 1=0,\ -b^2=-1$,此时$\lg b > -b^2$,
当$b=\frac{1}{10}$时,$\lg \frac{1}{10}=-1,\ -\left(\frac{1}{10}\right)^2=-\frac{1}{100}$,此时$\lg b < -b^2$,
则$b \in \left(\frac{1}{10},1\right)$,使得$\lg b = -b^2$,即$b \in \left(\frac{1}{10},1\right)$.
$
\because \ln c + c^3 = 0,\ \therefore \ln c = -c^3,$
设$y=\ln x$,定义域为$(0,+\infty)$,$y=\ln x$在$(0,+\infty)$上为单调递增函数,
设$y=-x^3$在$(0,+\infty)$上为单调递减函数.
当$c=1$时,$\ln c=\ln 1=0,\ -c^3=-1$,此时$\ln c > -c^3$,
当$c=\frac{1}{10}$时,$\ln \frac{1}{10}<\ln \frac{1}{\text{e}}=-1,\ -\left(\frac{1}{10}\right)^3=-\frac{1}{1000}$,此时$\ln c < -c^3$,
则$c \in \left(\frac{1}{10},1\right)$,使得$\ln c = -c^3$,即$c \in \left(\frac{1}{10},1\right)$.
当$x \in \left(\frac{1}{10},1\right)$时,$\lg x > \ln x,\ x^2 > x^3$,则$\lg x + x^2 > \ln x + x^3$,
$y=\lg x + x^2$在$x \in \left(\frac{1}{10},1\right)$为增函数,$y=\ln x + x^3$在$x \in \left(\frac{1}{10},1\right)$为增函数,
所以$\lg c + c^2 > \ln c + c^3 = 0 = \lg b + b^2$,
$
\therefore 0 < b < c,
$
综上可知,$a < b < c$.



暂无评论内容