方程$x^{\ln6} + x^{\ln8} = x^{\ln10}$的实数解为_______.
$\boldsymbol{\text{e}^2}$或$\boldsymbol{0}$
设$t = \ln x$,则$x = \text{e}^t$,
可得$x^{\ln6} = (\text{e}^t)^{\ln6} = (\text{e}^{\ln6})^t = 6^t$,
同理可得$x^{\ln8} = 8^t$,$x^{\ln10} = 10^t$,
则原方程可化为$6^t + 8^t = 10^t$.
等式$6^t + 8^t = 10^t$两边同时除以$10^t$可得
$\left(\frac{3}{5}\right)^t + \left(\frac{4}{5}\right)^t = 1$,
即$\left(\frac{3}{5}\right)^t + \left(\frac{4}{5}\right)^t – 1 = 0$.
设$f(t) = \left(\frac{3}{5}\right)^t + \left(\frac{4}{5}\right)^t – 1$,
因为函数$y=\left(\frac{3}{5}\right)^t$、$y=\left(\frac{4}{5}\right)^t – 1$在$\mathbf{R}$上均为减函数,
故函数$f(t) = \left(\frac{3}{5}\right)^t + \left(\frac{4}{5}\right)^t – 1$在$\mathbf{R}$上为减函数.
又因为$f(2) = \left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 – 1 = 0$,
所以方程$6^t + 8^t = 10^t$有且只有一个实根$t=2$.
由$\ln x = 2$,解得$x = \text{e}^2$,
故方程$x^{\ln6} + x^{\ln8} = x^{\ln10}$的实数解为$\text{e}^2$或$0$.
故答案为:$\boldsymbol{\text{e}^2}$或$\boldsymbol{0}$.



暂无评论内容