猫在做完手术后往往需要戴“防舔圈”(也被称为“伊丽莎白圈”)保护伤口,可将其视为一个圆台的侧面.现有一个宽度(圆台的母线)为$13$厘米的“防舔圈”,戴在一只猫的头上,把猫头理想化为一个半径为$5$厘米的球,这个球与“防舔圈”口径小的圆台底面相切且与圆台侧面相切,为了舔不到伤口,头到口径大的圆台底面的距离不小于$2$厘米,则口径小的底面半径最小为______厘米.
![图片[1]-25~26高三上·深圳龙岗区期末·第14题-学孜孜](https://www.xuezizi.com/wp-content/uploads/2026/01/image-13.png)
$\boldsymbol{\frac{10}{3}}$
![图片[2]-25~26高三上·深圳龙岗区期末·第14题-学孜孜](https://www.xuezizi.com/wp-content/uploads/2026/01/image-12.png)
球的球心为$O$,半径为$OO_1 = OA = 5$.
过$A$作$AB \perp O_2A_2$于点$B$.
设$\angle A_1A_2O_2 = \alpha$,$\alpha \in \left(0,\frac{\pi}{2}\right)$,且$\sin\alpha = \frac{A_1B}{A_1A_2} = \frac{O_1O_2}{A_1A_2} \ge \frac{12}{13}$,设$O_1A_1 = r$,
则$O_1O_2 = A_1B = 13\sin\alpha$,$A_2B = 13\cos\alpha$.
因为$S_{\triangle OA_1A_2} + S_{\triangle OO_1A_1} + S_{\triangle OO_2A_2} = S_{\text{梯形} O_1O_2A_2A_1}$,
所以$\frac12 \times 13 \times 5 + \frac12 r \times 5 + \frac12 \left(13\sin\alpha – 5\right) \times \left(r + 13\cos\alpha\right)$
$= \frac{\left(r + r + 13\cos\alpha\right)13\sin\alpha}{2}$,
整理得$r = \frac{5\left(1-\cos\alpha\right)}{\sin\alpha} = \frac{5 \times 2\sin^2\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = 5\tan\frac{\alpha}{2}$.
因为$\sin\alpha = 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = \frac{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2}}
= \frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}} \ge \frac{12}{13}$,
且$\frac{\alpha}{2} < \frac{\pi}{2}$,
所以$\begin{cases}
6\tan^2\frac{\alpha}{2} – 13\tan\frac{\alpha}{2} + 6 \le 0 \
0 < \tan\frac{\alpha}{2} < \tan\frac{\pi}{4} = 1
\end{cases}$,
即$\begin{cases}
\left(3\tan\frac{\alpha}{2} – 2\right)\left(2\tan\frac{\alpha}{2} – 3\right) \le 0 \
0 < \tan\frac{\alpha}{2} < 1
\end{cases}$,
解得$\frac{2}{3} \le \tan\frac{\alpha}{2} < 1$.
所以$\tan\frac{\alpha}{2}$的最小值为$\frac{2}{3}$,所以$5\tan\frac{\alpha}{2}$的最小值为$\frac{10}{3}$,即口径小的底面半径最小为$\frac{10}{3}$厘米.
故答案为:$\boldsymbol{\frac{10}{3}}$.
![图片[3]-25~26高三上·深圳龙岗区期末·第14题-学孜孜](https://www.xuezizi.com/wp-content/uploads/2026/01/image-14.png)



暂无评论内容