已知正方形$ABCD$的边长为$2$,点$M$在以$C$为圆心,$1$为半径的圆上,则$2|MB| + |MD|$的最小值为______.
$\sqrt{17}$
取点$E(0,\frac{1}{2})$,
设$M(x,y)$,
当$|MD| = 2|ME|$时,$\sqrt{x^2 + (y – 2)^2} = 2\sqrt{x^2 + (y – \frac{1}{2})^2}$,化简整理得$x^2 + y^2 = 1$,
即点$M$的轨迹是以$C$为圆心,$1$为半径的圆,
而点$M$在以$C$为圆心,$1$为半径的圆上,因此$|MD| = 2|ME|$,
显然点$B$在圆$C$:$x^2 + y^2 = 1$外,
则$2|MB| + |MD| = 2|MB| + 2|ME| $ $= 2(|MB| + |ME|) \geq 2|BE|$,
当且仅当$M$为线段$BE$与圆$C$的交点时取等号,
而$|BE| = \sqrt{2^2 + (\frac{1}{2})^2} = \frac{\sqrt{17}}{2}$,
所以$2|MB| + |MD|$的最小值为$2|BE| = \sqrt{17}$.
故答案为:$\sqrt{17}$.
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END



暂无评论内容