(多选)设$\theta$是两个非零向量$\boldsymbol{a},\boldsymbol{b}$的夹角,若对任意实数$t$,$|\boldsymbol{a}+2t\boldsymbol{b}|$的最小值为$2$,则下列结论正确的是( )
A.若$\theta$确定,则$|\boldsymbol{a}|$唯一确定
B.若$|\boldsymbol{a}|$确定,则$\theta$唯一确定
C.若$\theta = \frac{\pi}{3}$,则$|\boldsymbol{a}| = \frac{4\sqrt{3}}{3}$
D.若$|\boldsymbol{a}| = \frac{4\sqrt{3}}{3}$,则$\theta = \frac{\pi}{3}$
AC
A.若$\theta$确定,则$|\boldsymbol{a}|$唯一确定
B.若$|\boldsymbol{a}|$确定,则$\theta$唯一确定
C.若$\theta = \frac{\pi}{3}$,则$|\boldsymbol{a}| = \frac{4\sqrt{3}}{3}$
D.若$|\boldsymbol{a}| = \frac{4\sqrt{3}}{3}$,则$\theta = \frac{\pi}{3}$
则$|\boldsymbol{a}+2t\boldsymbol{b}| = |\overrightarrow{OA} + \lambda\overrightarrow{OB}|$最小值即为$A$到直线$OB$的距离,
所以$|\boldsymbol{a}|\sin\theta = 2$. 若$\theta$确定,则$|\boldsymbol{a}|$唯一确定,A正确;
若$\theta = \frac{\pi}{3}$,则$|\boldsymbol{a}| = \frac{4\sqrt{3}}{3}$,C正确;
若$|\boldsymbol{a}| = \frac{4\sqrt{3}}{3}$,则$\theta = \frac{\pi}{3}$或$\theta = \frac{2\pi}{3}$,D不正确;
若$|\boldsymbol{a}|$确定,则$\theta$有两个解,B不正确.
故选AC.



暂无评论内容