已知$\triangle ABC$面积为$1$,边$AC,AB$上的中线为$BD,CE$,且$BD = \frac{4}{3}CE$,则边$AC$的最小值为______.
$\frac{\sqrt{10}}{3}$
易知$G$为$\triangle ABC$的重心,
又$BD = \frac{4}{3}CE$,由重心为中线三等分点可得:$BG = \frac{4}{3}CG$,
同时$S_{\triangle BGC} = \frac{2}{3}S_{\triangle BCD} = \frac{1}{3}S_{\triangle ABC} = \frac{1}{3}$,
设$CG = 3x$,$\angle CGD = \theta$,
则$BG = 4x$,$GD = 2x$,
则$S_{\triangle BGC} = \frac{1}{2}(3x)(4x)\sin(\pi – \theta) = 6x^2\sin\theta = \frac{1}{3}$,
所以$x^2 = \frac{1}{18\sin\theta}$,
由余弦定理可得:$AC = 2CD = 2\sqrt{4x^2 + 9x^2 – 12x^2\cos\theta} = 2\sqrt{\frac{13 – 12\cos\theta}{18\sin\theta}}$,
令$z = \frac{13 – 12\cos\theta}{\sin\theta}$,求其最小值即可,
上式化简可得:$13 = 12\cos\theta + z\sin\theta \leq \sqrt{(12^2 + z^2)(\cos^2\theta + \sin^2\theta)} = \sqrt{12^2 + z^2}$,
也即$z^2 \geq 13^2 – 12^2 = 25$,当且仅当$5\sin\theta + 12\cos\theta = 13$时取得等号,
所以$AC = 2\sqrt{\frac{13 – 12\cos\theta}{18\sin\theta}} \geq 2\sqrt{\frac{5}{18}} = \frac{\sqrt{10}}{3}$,
故答案为:$\frac{\sqrt{10}}{3}$.



暂无评论内容