向量线性表示定动点,外心加持下的最值突围

设点$P$是$\triangle ABC$所在平面内动点,且$\angle A \neq \frac{\pi}{2}$,$P$点满足$\overrightarrow{CP} = \lambda \overrightarrow{CA} + \mu \overrightarrow{CB}$,$3\lambda + 4\mu = 2$($\lambda, \mu \in \mathbf{R}$),$|\overrightarrow{PA}| = |\overrightarrow{PB}| = |\overrightarrow{PC}|$.若$|AB| = 3$,则$\triangle ABC$的面积最大值是______

$9$

【题目】设点$P$是$\triangle ABC$所在平面内动点,且$\angle A \neq \frac{\pi}{2}$,$P$点满足$\overrightarrow{CP} = \lambda \overrightarrow{CA} + \mu \overrightarrow{CB}$,$3\lambda + 4\mu = 2$($\lambda, \mu \in \mathbf{R}$),$|\overrightarrow{PA}| = |\overrightarrow{PB}| = |\overrightarrow{PC}|$.若$|AB| = 3$,则$\triangle ABC$的面积最大值是______

【答案】$9$

【解析】设$\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$,$\overrightarrow{CD} = \frac{1}{2}\overrightarrow{CB}$,
从而$\overrightarrow{CP} = \lambda \overrightarrow{CA} + \mu \overrightarrow{CB} $$= \frac{3\lambda}{2}\overrightarrow{CE} + 2\mu \overrightarrow{CD}$,

因为$\frac{3\lambda}{2} + 2\mu = 1$,所以$P$在$ED$上.

点$P$是$\triangle ABC$的外心,$ED$是$BC$中垂线,
延长$BA$到$F$,使$AB = AF$,连接$CF$,则点$E$是$\triangle FBC$的重心,$FD$是$BC$边上的中线,
因为$FD \perp BC$,所以$FC = FB = 2AB = 6$,
$S_{\triangle ABC} = \frac{1}{2}S_{\triangle FBC} $$= \frac{1}{4} \times FB \times FC \times \sin\angle CFB $$= 9\sin\angle CFB \leq 9$.

© 版权声明
THE END
喜欢就支持一下吧
点赞8 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容