在$\triangle ABC$中,$P$为边$AB$上一点,$CP = 1$,$\angle ACP = 30^{\circ}$,$\angle BCP = 45^{\circ}$,$AP = \lambda BP$,$\angle CPB = \theta$.当$\triangle ABC$面积最小时,$\tan\theta = $________.
$\sqrt{3} + 1$
所以$S_{\triangle ABC} = \frac{\sqrt{2}}{4}BC + \frac{1}{4}AC$.
在$\triangle ACP$中,由正弦定理得$\frac{AC}{\sin(180^{\circ} – \theta)} = \frac{CP}{\sin(\theta – 30^{\circ})}$,
化简得$AC = \frac{2\sin\theta}{\sqrt{3}\sin\theta – \cos\theta}$.
在$\triangle BCP$中,由正弦定理得$\frac{BC}{\sin\theta} = \frac{CP}{\sin(135^{\circ} – \theta)}$,
化简得$BC = \frac{\sqrt{2}\sin\theta}{\cos\theta + \sin\theta}$.
故$S_{\triangle ABC} = \frac{1}{2}\left( \frac{\sin\theta}{\cos\theta + \sin\theta} + \frac{\sin\theta}{\sqrt{3}\sin\theta – \cos\theta} \right) $$= \frac{1}{2}\left( \frac{1}{\tan\theta + 1} + \frac{1}{\sqrt{3} – \frac{1}{\tan\theta}} \right)$,
令$\frac{1}{\tan\theta} = m$,
则$S_{\triangle ABC} = \frac{1}{2}\left( \frac{1}{m + 1} + \frac{1}{\sqrt{3} – m} \right) $$= \frac{\sqrt{3} + 1}{2} \cdot \frac{1}{(m + 1)(\sqrt{3} – m)}$,
由二次函数性质可知,$f(m) = (m + 1)(\sqrt{3} – m) $$= -m^2 + (\sqrt{3} – 1)m + \sqrt{3}$,
函数开口向下,对称轴为$m = \frac{\sqrt{3} – 1}{2}$,
所以当$m = \frac{\sqrt{3} – 1}{2}$时,$f(m)$取得最大值$\left( \frac{\sqrt{3} – 1}{2} + 1 \right)\left( \sqrt{3} – \frac{\sqrt{3} – 1}{2} \right) $$= \left( \frac{\sqrt{3} + 1}{2} \right)^2 = \frac{2 + \sqrt{3}}{2}$,
即当$m = \frac{\sqrt{3} – 1}{2}$时,$S_{\triangle ABC}$取最小值,
此时$\tan\theta = \frac{1}{m} = \frac{2}{\sqrt{3} – 1} = \sqrt{3} + 1$.
故答案为:$\sqrt{3} + 1$.



暂无评论内容