若函数$f(x) = \sqrt{x + 1} + k$的定义域为$[m, n](m < n)$,值域为$[m, n]$,则实数$k$的取值范围是______.
$\left( -\frac{5}{4}, -1 \right]$
且有$f(x)$在定义域内单调递增,
则$f(m) = \sqrt{m + 1} + k = m$,$f(n) = \sqrt{n + 1} + k = n$,
即$\sqrt{m + 1} = m – k$,$\sqrt{n + 1} = n – k$,
令$t_1 = \sqrt{m + 1} \geq 0$,$t_2 = \sqrt{n + 1} > 0$,
则$m = t_1^2 – 1$,$n = t_2^2 – 1$,
则$t_1^2 – t_1 – 1 – k = 0$,$t_2^2 – t_2 – 1 – k = 0$,
故$t_1, t_2$是关于$t$的方程$t^2 – t – 1 – k = 0$的两个不同非负根,
则有$\begin{cases} \Delta = 1^2 + 4(1 + k) > 0 \ t_1 + t_2 = 1 > 0 \ t_1t_2 = -1 – k \geq 0 \end{cases}$,
解得$-\frac{5}{4} < k \leq -1$.
故答案为:$\left( -\frac{5}{4}, -1 \right]$.



暂无评论内容