【题目】已知抛物线$x^2 = 4y$,过动点$P$作抛物线的两条切线,记两条切线的斜率分别为$k_1$、$k_2$,若$(k_1 – 1)(k_2 – 1) + 1 = 0$,则动点$P$的轨迹方程为______.
$x – y – 2 = 0$
$y = k(x – x_0) + y_0$与$x^2 = 4y$联立得$x^2 – 4kx + 4kx_0 – 4y_0 = 0$,
由$\Delta = 0$,整理得$k^2 – x_0k + y_0 = 0$,
则方程$k^2 – x_0k + y_0 = 0$的两个根为$k_1$和$k_2$,
则$k_1 + k_2 = x_0$,$k_1k_2 = y_0$.
$\because (k_1 – 1)(k_2 – 1) + 1 = 0$,
$\therefore k_1k_2 – (k_1 + k_2) + 1 + 1 = 0$,
$\therefore y_0 – x_0 + 2 = 0$,
$\therefore x_0 – y_0 – 2 = 0$,
$\therefore$ 动点$P$的轨迹方程为$x – y – 2 = 0$.
故答案为:$x – y – 2 = 0$
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END



暂无评论内容