已知正数$x$,$y$满足$x + y = \frac{1}{x} + \frac{4}{y} + 8$,则$x + y$的最小值为______.
$9$
$x + y = \frac{1}{x} + \frac{4}{y} + 8$
$= \left( \frac{1}{x} + \frac{4}{y} + 8 \right)(x + y) \cdot \frac{1}{t} + 8$
$= \left( 1 + \frac{y}{x} + \frac{4x}{y} + 4 \right) \cdot \frac{1}{t} + 8$
$= \left( 5 + \frac{y}{x} + \frac{4x}{y} \right) \cdot \frac{1}{t} + 8$
$\geq \left( 5 + 2\sqrt{\frac{y}{x} \cdot \frac{4x}{y}} \right) \cdot \frac{1}{t} + 8 = \frac{9}{t} + 8$,
故$t^2 – 8t – 9 \geq 0$,
由于$t > 0$,故$t \geq 9$,即$x + y \geq 9$,
当且仅当$\frac{y}{x} = \frac{4x}{y}$,且$x + y = \frac{1}{x} + \frac{4}{y} + 8$,即$x = 3$,$y = 6$时,上式取“$=$”,
所以$x + y$的最小值为$9$.



暂无评论内容