已知$x_0^2\text{e}^{x_0} + \text{e}^4\ln x_0 = 4\text{e}^4$,则$\ln x_0 + x_0$的值为( )
A.$1$ B.$2$
C.$4$ D.$6$
C
已知$x_0^2\text{e}^{x_0} + \text{e}^4\ln x_0 = 4\text{e}^4$,则$\ln x_0 + x_0$的值为( )
A.$1$ B.$2$
C.$4$ D.$6$
得$x_0^2\text{e}^{x_0} = 4\text{e}^4 – \text{e}^4\ln x_0$,
即$x_0^2\text{e}^{x_0} = \text{e}^4\ln \text{e}^4 – \text{e}^4\ln x_0 = \text{e}^4\ln \frac{\text{e}^4}{x_0}$,
显然$x_0 > 0$,即$x_0\text{e}^{x_0} = \frac{\text{e}^4}{x_0}\ln \frac{\text{e}^4}{x_0} = \ln \frac{\text{e}^4}{x_0} \cdot \text{e}^{\ln \frac{\text{e}^4}{x_0}}$,
因为$x_0 > 0$,所以$x_0\text{e}^{x_0} > 0$,$\text{e}^{\ln \frac{\text{e}^4}{x_0}} > 0$,所以$\ln \frac{\text{e}^4}{x_0} > 0$,
令$f(x) = x\text{e}^x, x > 0$,则$f(x_0) = f\left(\ln \frac{\text{e}^4}{x_0}\right)$,
由于$f'(x) = (x\text{e}^x)’ = \text{e}^x + x\text{e}^x = (1 + x)\text{e}^x$,且$x > 0$,即得$f'(x) > 0$,
故$f(x) = x\text{e}^x$在$(0, +\infty)$上单调递增,
所以$x_0 = \ln \frac{\text{e}^4}{x_0}$,
即$x_0 = \ln \text{e}^4 – \ln x_0$,即$x_0 + \ln x_0 = \ln \text{e}^4 = 4$.
故选:C.



暂无评论内容