若定义在区间$[a,b]$$(a\lt b)$上的函数$f(x)=k-\sqrt{x+1}$值域为$[a,b]$,则实数$k$的取值范围是_____.
$(-\frac{1}{4},0]$
当$f(x)$的定义域为$[a,b]$时,$f(x)$的值域也为$[a,b]$,
故$f(a)=k-\sqrt{a+1}=b$①,$f(b)=k-\sqrt{b+1}=a$②,
②$-$①得:$\sqrt{a+1}-\sqrt{b+1}=a-b=(a+1)-(b+1)$$=(\sqrt{a+1}-\sqrt{b+1})(\sqrt{a+1}+\sqrt{b+1})$,
因为$a\lt b$,所以$\sqrt{a+1}-\sqrt{b+1}\lt 0$,
即$\sqrt{a+1}+\sqrt{b+1}=1$,③
将③代入②,$k=\sqrt{b+1}+a=a+1-\sqrt{a+1}$,
令$\lambda=\sqrt{a+1}\geq 0$,得$k=\lambda^2-\lambda=(\lambda-\frac{1}{2})^2-\frac{1}{4}$,
又$a\lt b$,故$\sqrt{a+1}\lt \sqrt{b+1}$,
$\because \sqrt{a+1}+\sqrt{b+1}=1$,所以$\sqrt{a+1}\in [0,\frac{1}{2})$,
$\therefore 0\leq \lambda\lt \frac{1}{2}$.
故实数$k$的取值范围为$-\frac{1}{4}\lt k\leq 0$.
故答案为:$(-\frac{1}{4},0]$.



暂无评论内容