连续抛掷一枚质地均匀的硬币(正面向上和反面向上的概率均为$\frac{1}{2}$),当向上的结果出现“正面-反面”或“反面-正面”时,游戏结束.若抛掷50次,向上的结果没有出现“正面-反面”或“反面-正面”,游戏也结束.游戏结束时,记抛掷总次数为$X$,若$E(X) < M$($M$为正整数),则$M$的最小值为______.
$\boldsymbol{3}$
$P(X=i)=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{2} + \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{2} = \left(\frac{1}{2}\right)^{i-1}$,$\quad i=2,3,4,\dots,49$,
$P(X=50)=\left(\frac{1}{2}\right)^{49} + \left(\frac{1}{2}\right)^{49} = \left(\frac{1}{2}\right)^{48}$,
所以$E(X)=2 \times \frac{1}{2} + 3 \times \left(\frac{1}{2}\right)^2 + 4 \times \left(\frac{1}{2}\right)^3 + $$\dots + 49 \times \left(\frac{1}{2}\right)^{48} + 50 \times \left(\frac{1}{2}\right)^{48}$,
$\frac{1}{2}E(X)=2 \times \left(\frac{1}{2}\right)^2 + 3 \times \left(\frac{1}{2}\right)^3 + $$\dots + 48 \times \left(\frac{1}{2}\right)^{48} + 49 \times \left(\frac{1}{2}\right)^{49} + 50 \times \left(\frac{1}{2}\right)^{49}$,
两式相减得$\frac{1}{2}E(X)=1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + $$\dots + \left(\frac{1}{2}\right)^{48} + 51 \times \left(\frac{1}{2}\right)^{49} – 50 \times \left(\frac{1}{2}\right)^{49}$
$=1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^{48} + \left(\frac{1}{2}\right)^{49}$
$=1 + \frac{\left(\frac{1}{2}\right)^2 – \left(\frac{1}{2}\right)^{50}}{1-\frac{1}{2}} = \frac{3}{2} – \left(\frac{1}{2}\right)^{49}$
因此$E(X)=3 – \left(\frac{1}{2}\right)^{48} < 3$,
所以正整数$M$的最小值为$3$.
故答案为:$\boldsymbol{3}$.



暂无评论内容