递推藏巧思,构造等比解锁通项

在数列${a_n}$中,$a_1=0$,$a_{n+1}=2a_n – 3^n – n^2 + 2n + 1$,则$a_n =$________.

$2^n – 3^n + n^2$

【题目】在数列${a_n}$中,$a_1=0$,$a_{n+1}=2a_n – 3^n – n^2 + 2n + 1$,则$a_n =$________.

【答案】$2^n – 3^n + n^2$
【解析】由$a_{n+1}=2a_n – 3^n – n^2 + 2n + 1$,
得$a_{n+1} + 3^{n+1} – (n+1)^2 = 2(a_n + 3^n – n^2)$.
由$a_1=0$,得$a_1 + 3^1 – 1^2 = 2$.
所以$\frac{a_{n+1} + 3^{n+1} – (n+1)^2}{a_n + 3^n – n^2} = 2$.
所以数列${a_n + 3^n – n^2}$是首项为$2$,公比为$2$的等比数列.
所以$a_n + 3^n – n^2 = 2×2^{n-1} = 2^n$.
所以$a_n = 2^n – 3^n + n^2$.
故答案为:$2^n – 3^n + n^2$.

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容