已知正数$a$满足$2^{a^2} = \frac{1}{a}$,则$a^2 = $________.
$\frac{1}{2}$
又$2^{a^2} = \frac{1}{a}$,所以$2^t = \frac{1}{a}$,
则$a = \left(\frac{1}{2}\right)^t$,因此$t^{\frac{1}{2}} = \left(\frac{1}{2}\right)^t$,
取对数得$\frac{1}{2}\ln t = t\ln\frac{1}{2}$,即$\frac{\ln t}{t} = \frac{\ln\frac{1}{2}}{\frac{1}{2}}$,
令$f(t) = \frac{\ln t}{t}$,则$f'(t) = \frac{1 – \ln t}{t^2}$,
令$f'(t) = 0$,解得$t = e$.
当$t \in (0, e)$时,$f'(t) > 0$恒成立,
所以$f(t)$单调递增,
当$t \in (e, +\infty)$时,$f'(t) < 0$恒成立, 所以$f(t)$单调递减, 又当$t \in (0, 1)$时,$f(t) < 0$恒成立, 当$t \in (1, +\infty)$时,$f(t) > 0$恒成立,
因此只有当$t = \frac{1}{2}$时才满足条件,
即$a^2 = t = \frac{1}{2}$.
故答案为:$\frac{1}{2}$.



暂无评论内容