在锐角$\Delta ABC$中,若$\frac{1}{\tan B} + \frac{1}{\tan C} = 2$,则$\tan A + \tan B + \tan C$的最小值是_______.
$8$
得$\tan B + \tan C = 2\tan B\tan C$,
因为$\Delta ABC$为锐角三角形,
所以$\tan A, \tan B, \tan C$均大于0,
所以$\tan A + \tan B + \tan C $
$= \tan A + 2\tan B\tan C $
$\geq 2\sqrt{2\tan A\tan B\tan C}$,
又$\tan A + \tan B + \tan C $
$= \tan A + \tan B – \tan(A + B)$
$= \tan A + \tan B – \frac{\tan A + \tan B}{1 – \tan A\tan B} $
$= (\tan A + \tan B)\left( 1 – \frac{1}{1 – \tan A\tan B} \right)$
$= \frac{(\tan A + \tan B)(-\tan A\tan B)}{1 – \tan A\tan B} $
$= -\tan(A + B)\tan A\tan B $
$= \tan A\tan B\tan C$,
所以$\tan A + \tan B + \tan C $
$= \tan A + 2\tan B\tan C $
$\geq 2\sqrt{2(\tan A + \tan B + \tan C)}$,
解得$\tan A + \tan B + \tan C \geq 8$,
当且仅当$\tan A = 2\tan B\tan C$,
即$\tan A = 2\tan B\tan C = 4$,
即$\begin{cases} \tan B + \tan C = 4 \ \tan B\tan C = 2 \end{cases}$时取等号,
解得$\begin{cases} \tan A = 4 \ \tan B = 2 – \sqrt{2} \ \tan C = 2 + \sqrt{2} \end{cases}$或$\begin{cases} \tan A = 4 \ \tan B = 2 + \sqrt{2} \ \tan C = 2 – \sqrt{2} \end{cases}$,
所以$\tan A + \tan B + \tan C$的最小值是$8$.
故答案为:$8$.



暂无评论内容