在三棱锥$P – ABC$中,$AB = 2\sqrt{6}$,$PC = 1$,$PA + PB = 6$,$CA – CB = 4$,且$PC \perp AB$,则二面角$P – AB – C$的余弦值的最小值为_______.
$\frac{\sqrt{6}}{5}$
所以$b_1 = \sqrt{a_1^2 – c^2} = \sqrt{3}$,点$P$的轨迹方程为$\frac{x^2}{9} + \frac{y^2}{3} = 1$,
![图片[1]-25~26高三上·南昌二中周测·第14题-学孜孜](https://www.xuezizi.com/wp-content/uploads/2026/02/image-10.png)
又因为$CA – CB = 4 = 2a_2$,则$a_2 = 2$,且$c = \sqrt{6}$,则$b_2 = \sqrt{c^2 – a_2^2} = \sqrt{2}$,
所以点$C$的轨迹方程为$\frac{x^2}{4} – \frac{y^2}{2} = 1$(双曲线的一支),
![图片[2]-25~26高三上·南昌二中周测·第14题-学孜孜](https://www.xuezizi.com/wp-content/uploads/2026/02/image-11.png)
过点$P$在平面$PAB$内作$PH \perp AB$,垂足为点$H$,连接$CH$,
因为$AB \perp PC$,而$PH \cap PC = P$,$PH$、$PC \subset$面$PHC$,所以$AB \perp$面$PHC$,
![图片[3]-25~26高三上·南昌二中周测·第14题-学孜孜](https://www.xuezizi.com/wp-content/uploads/2026/02/image-12.png)
因为$CH \subset$平面$PHC$,则$CH \perp AB$,则二面角$P – AB – C$的平面角为$\angle PHC$,
设$O$为$AB$中点,因为$P$点在椭圆上,设$P(3\cos\theta, \sqrt{3}\sin\theta)(\theta \in \left( 0, \frac{\pi}{2} \right])$,所以$OH = 3\cos\theta (\theta \in \left( 0, \frac{\pi}{2} \right])$,$PH = \sqrt{3}\sin\theta$,
因为$C$在双曲线上,$x_C = 3\cos\theta$,
所以$y_C = CH = \sqrt{\frac{9}{2}\cos^2\theta – 2}$,
所以$\cos \angle PHC = \frac{PH^2 + CH^2 – PC^2}{2PH \cdot CH} $$= \frac{3\sin^2\theta + \frac{9}{2}\cos^2\theta – 2 – 1}{2\sqrt{3}\sin\theta \sqrt{\frac{9}{2}\cos^2\theta – 2}}$
$= \frac{\frac{3}{2}\cos^2\theta}{2\sqrt{3}\sin\theta \sqrt{\frac{9}{2}\cos^2\theta – 2}} $$= \frac{\sqrt{6}}{4} \cdot \frac{\cos^2\theta}{\sin\theta \sqrt{9\cos^2\theta – 4}} $$= \frac{\sqrt{6}}{4} \cdot \frac{\cos^2\theta}{\sqrt{(9\cos^2\theta – 4)(1 – \cos^2\theta)}}$
$= \frac{\sqrt{6}\cos^2\theta}{2\sqrt{(9\cos^2\theta – 4)(4 – 4\cos^2\theta)}} $$\geq \frac{\sqrt{6}\cos^2\theta}{(9\cos^2\theta – 4) + (4 – 4\cos^2\theta)} = \frac{\sqrt{6}}{5}$,
当且仅当$9\cos^2\theta – 4 = 4 – 4\cos^2\theta$时,即当$\cos\theta = \frac{2\sqrt{26}}{13}$时,等号成立,
因此二面角$P – AB – C$的余弦值的最小值为$\frac{\sqrt{6}}{5}$.
故答案为:$\frac{\sqrt{6}}{5}$.



暂无评论内容